Introducing Relate

A Software for Establishing Quantitative Relationships between Manuscripts

Pasi Hyytiäinen University of Helsinki

What is Relate?

A software that efficiently relates manuscripts in a quantitative manner

Uses transcriptions only

- Does not require collations, variation units or encodings
- Once texts are transcribed, it can relate hundreds of manuscripts in matter of hours
 - No need to rely on samples anymore
 - All textual data can be considered in each manuscript tradition

Now exists as source code

- Does not have GUI (graphical user interface)
- Written in Python
- GitHub

Background

Colwell and Tune

- "Quantitative method of textual analysis"
- Based on collations and units of variation
- Records instances of agreements in places of variation
- Agreements are converted into percentages by dividing the number of agreements and the number of all variation places between pairs of MSS
- Definition of a variation place
- A segment of a text containing at least two variants supported by at least two MSS
- Genetically significant variants

Gordon Fee

- Calculating agreements in two stages
- Continued the usage of genetically significant variants

Background

CBGM

- Pre-genealogical coherence
- Singular readings are also considered
- Almost all types variations are considered

The concept of a genetically significant variant lives on

 Hurtado (1981), Geer (1994), Osburn (2004), Donker (2011)

Problems

- Different definitions of the variatio unit leads to differing agreements rates
- Critics divides texts into variation units very differently
 - This also affects the agreement rates
 - Colwell and Tune acknowledged this problem already in 1964
- Coventional quantitative methods of textual analysis takes lots of time

- the fox jumped over the hedge
- the cat jumped over the fence
- a man saw that the fox jumped over the hedge
- a man saw that the fox jumped over the fence

	S	olution 1	Solution 2				
A B C D E	– – a man saw that a man saw that	the fox jumped over the hedge - the cat jumped over the fence the fox jumped over the hedge the fox jumped over the fence	– – a man saw that a man saw that	the fox jumped – the cat jumped the fox jumped the fox jumped	over the hedge – over the fence over the hedge over the fence		
Agreement rates			Agr	eement rates			
	A, D	50 %	A, D	66,6 9	\$ %		
P.L	C, E	0 %	C, E	C, E 33,3			
			attended and and and				

А

В

С

D

Ε

- the fox jumped over the hedge
- the cat jumped over the fence
- a man saw that the fox jumped over the hedge
- a man saw that the fox jumped over the fence

S	Solution 1	Solution 2				
– – a man saw tha a man saw tha	the for jumped over the hedde Countless of decise made and every or direct impact on th	he of them hav	be /e a	jumped - jumped jumped jumped	over the hedge – over the fence over the hedge over the fence	

See.			4			
	Agreeme	ent rates	C	Agreem	ent rates	il.
	A, D	50 %		A, D	66,6 %	
A.	C, E	0 %		C, E	33,3 %	

Toward a New Way of Thinking

Testing different stemmatological approaches

- CBGM
 - "Evolving Gamaliel Tradition in Codex Bezae Cantabrigiensis, Acts 5:38–39: A Novel Application of Coherence-Based Genealogical Method (CBGM)"
- Phylomemetics
 - "The Changing Text of Acts: A Phylogenetic Approach"

Interdisciplinary state of mind

- String metrics
- Set theory
- Data mining

Considering all textual data

- Relying on samples is not an ideal situation
 - Teststellen
 - Michelle Barbi on Dante
 - From 396 lines, only 121 proved to be useful

Toward a New Way of Thinking

Abandoning collations and variation units

Giving more weight to computers and algorithms

Increasing the speed of the analysis

Decreasing the subjectivity of the analysis

Used Methodology

Theoretical foundation of the methodology:

• "A new method in establishing quantitative relationships between manuscripts of the New Testament" in Digital scholarship in the Humanities, 2022 (open-access)

String metrics

- Measures the similarity between two strings
 - String is a sequence of chracters = a text
- Allows one to operate using transcriptions only
 - No need for collations or variation units
- This can be calculated in several ways
 - Character-based string metrics
 - Levehnstein, Hamming, Jaro etc.
 - Token-based string metrics
 - Bag-of-Words (BOW)
 - Shingling
 - Jaccard, Overlap, and Sørensen-Dice

Used Methodology

Problems with the character-based approaches

Cannot be used in Greek NT manuscripts

- Records similarities between words that are entirely different
 - περιβάλλω / περιπλέπω
- Results to overly high similarity values

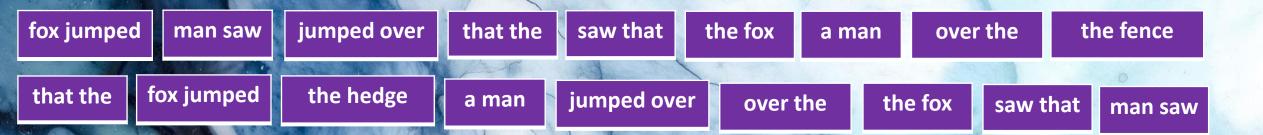
Requires too many operations

Calculations takes too much time

Token-based approaches

- Are much simpler
 - Demand fewer operations
 - Faster
- Record all types of variations between manuscripts
 - Word changes, additions, deletions, word order changes
- Results to similar agreement rates compared to conventional calculations
- Standardization of the spelling is recommended

Step 1: K-Shingling


a man saw that the fox jumped over the fence

Step 1: K-Shingling

a man saw that the fox jumped over the fence

a man saw that the fox jumped over the hedge

Step 2: Calculating similarities

<u>Set1</u>	fox jumped	man sa	w jumped over	that the	saw that	the fox	a man	over the	the fence
<u>Set2</u>	that the fo	ox jumped	the hedge	a man	jumped over	over th	ne the	e fox saw	that man saw
0	Word big	ram	Set 1	Set	2		A.C.	1	
	fox jump	bed	1	1		TX	North I		
	man sa	W	1	1				1	
	jumped o	over	1	1	-				0
	that th	е	1	1			Intersecti	on = 8	
	saw th	at	1	1		- M	-Union = 1	/	
	the fo	x	1	1		16			
E Ru	a mar	ı	1	1	5	A PAK	Jaccard c	oefficient = $\frac{in}{}$	tersection union
Y.	over th	e	1	1		- may	= 8 / 10 =	0.8 = 80 %	
10.25	the hed	ge	0	1					
	the fen	се	1	0	1			and the second	

Step 2: Calculating similarities

<u>Set1</u>	fox jump	ed	man sa	w jumped over	that the	saw that	the fox	a man	over the	t	he fence
<u>Set 2</u>	that the	fox j	jumped	the hedge	a man	jumped over	over th	ne the	e fox saw	that	man saw
0	Word I	bigra	m	Set 1	Se	t 2		A.		4	
	fox ju	mpec	t	1	1			March 1			
	man	saw		1	1				1		
	jumpe	ed ove	er	1	1	*				.0	
A C	that	t the		1	1			Intersecti	on = 8		
	saw	that		1	1		- M	-Union = 1	/		
	the	fox		1	1		56		/		
	a m	nan		1	1	5	anx	Jaccard	pefficient = ⁱⁿ	tersect unior	
Y.	ovei	r the		1	1		- mal	= 8 / 10 =	0.8 = 80 %		
10.36	the h	nedge		0	1						
	the f	ence		1	C	1.	257				

Step 2: Calculating similarities

<u>Set1</u>	fox jump	ed man	saw	jumped over	that the	e saw that	the	e fox	a man	over	the	the fence
			A 24	A								
<u>Set2</u>	that the	fox jump	ed	the hedge	a man	jumped ove	er	over the	e the	fox s	saw that	man saw
0	Word I	oigram		Set1	S	et2			Æ	18		
	fox ju	mped		1		1						
	man	saw		1		1				1.		
* *	jumpe	d over		1		1						
A CAR	that	the		1		1	1		Intersection	on - 8	41	
	saw	that		1		1		1		/		
	the	fox		1		1			Union = 1		<u> </u>	
· ·	a m	nan		1		1		R	Sørensen-			SDC)
Yes	over	the		1		1	- Change	sum	2 of the num	x interseo nber of el		each set
A.K.	the h	edge		0		1		N	= 16	/ 18 = 0.88	8 = 88 %	
	the f	ence		1		0	00	1	N. S. S. S.			

1	Letter bigram	Set1	Set2	
	'a	1	1	
	' m'	1	1	
	'ma'	1	1	
A M	'an'	1	1	1
	'an'	1	1	
	'n '	1	1	
	' s'	1	1	
	'sa'	1	1	
0	'aw'	1	1	1
	'w '	1	1	
	' t'	1	1	
	'th'	1	1	
	'ha'	1	1	
-	'at'	1	1	1
	't '	1	1	
	' t'	1	1	
	'th'	1	1	
	'he'	1	1	
	'e '	1	1	
	' f'	1	1	154
	'fo'	1	1	1
	'ox'	1	1	

Sørensen-Dice Coefficient 64 / 71 = 0.90 = 90 %

Speed

Token-based approach is fast

• The combination of k-shingling and the Sørensen-Dice coefficient

- 54 manuscripts of Acts can be analyzed, using the letter-grams, in their entirety (28 chapters) in ten minutes
 - (2916 comparisons x 0.21 sec = 612 sec = 10.2 min)

Character-based approach is slower

- Fastest Levenshtein algorithm (Myers)
 - 54 manuscripts of Acts can be analyzed in their entirety in 100 minutes
 - (2916 comparisons x 2,05 sec = 6000 sec = 100 min)

Accuracy: Acts 5

MSS	CBGM	K-shingling + SDC
03, 05	73.93	74.12
03, 1175	94.26	94.26
614, 876	89.54	90.84
1409, 1739	91.24	91.71

Relate includes

Tokenization:

K-shingling (character and word)

Character-based metrics:

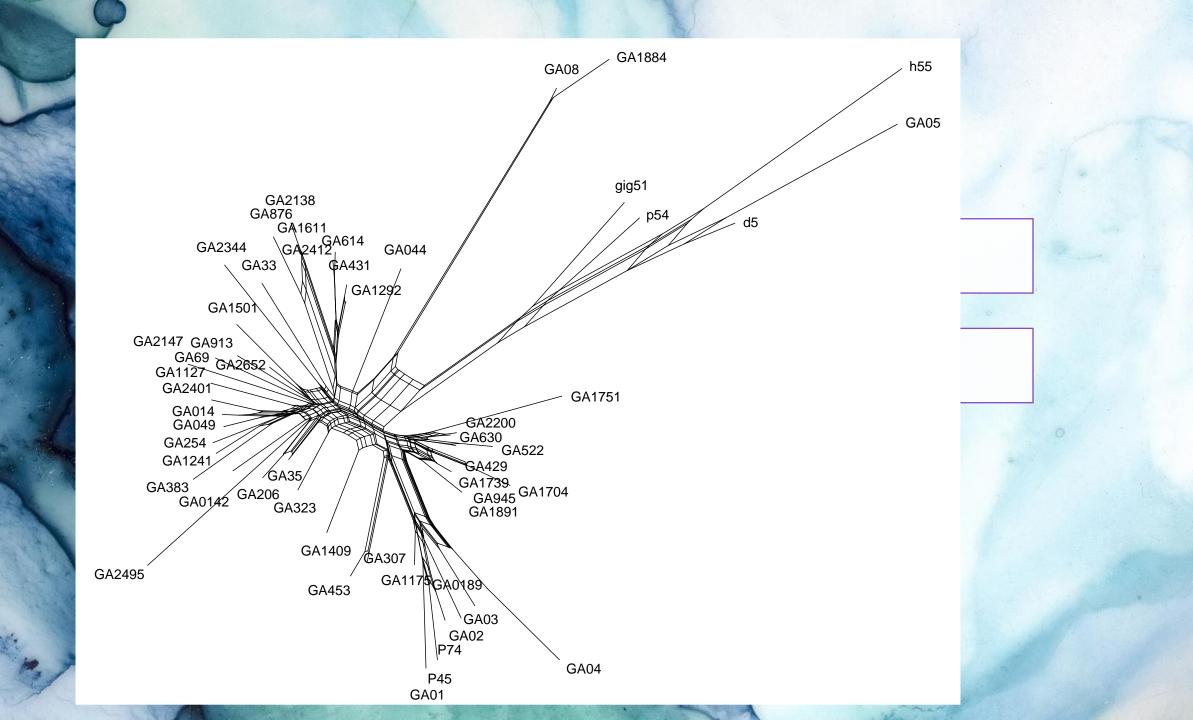
• Levenshtein and Hamming

Token-based metrics:

• Jaccard, Overlap, Sørensen-Dice

Matrixes:

• Similarity, distance (with or without a standardizing function)


Prospects

Developing GUI for Relate...?

• It needs some studying to use Relate at this stage of development

Integrating tree inference and network methods

Network analysis is promising

Prospects

Developing GUI for Relate...?

• It needs some studying to use Relate at this stage of development

Integrating tree inference and network methods

Network analysis is promising

Transcribing process must be automated

- Using machine learning and neural networks
 - Handwritten text recognition (HTR) techniques

Thank you! Enjoy your time in Denver!